Homework 3, due 9/24
Only your four best solutions will count towards your grade.

1. Suppose that $f, g: \mathbf{C} \rightarrow \mathbf{C}$ are holomorphic, and $|f(z)| \leq|g(z)|$ for all $z \in \mathbf{C}$. Prove that $f=c g$ for some $c \in \mathbf{C}$.
2. Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be holomorphic and injective. Show that $f(z)=a z+b$ for some $a, b \in \mathbf{C}$, with $a \neq 0$.
3. Compute the integral

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x
$$

4. Compute the integral

$$
\int_{0}^{\infty} \frac{1}{x^{3}+1} d x
$$

Hint: consider the integral of $\log z /\left(z^{3}+1\right)$ along a suitable contour.
5. Use the residue formula to prove that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

by considering the integral of $f(z)=\frac{\cot (\pi z)}{z^{2}}$ around large circles centered at the origin.
6. Suppose that f is holomorphic on the punctured disk $D(0,1) \backslash\{0\}$, and that for some $A, \epsilon>0$ we have

$$
|f(z)|<A|z|^{-1+\epsilon}
$$

for all $z \in D(0,1) \backslash\{0\}$. Show that 0 is a removable singularity of f.
7. Prove that the function $f(z)=\sin (1 / z)$ has an essential singularity at $z=0$.

